Development of Environment-Friendly Base Materials for Seaweed Beds using Recycled Materials and its Long-term Monitoring

K. Yamamoto¹, K. Fukuda², T. Negami³, N. Mizoguchi⁴, H. Hira⁵ and Y. Tsurunari¹

1 Oita University, Oita, JAPAN, 2 Fukuda Gumi Limited Company, Yamaguchi, JAPAN, 3 Saga University, Saga, JAPAN 4 Fukushima Youzai Limited Company, Nagasaki, JAPAN, 5 Kagoshima University, Kagoshima, JAPAN

Abstract

The area of seaweed beds along Japanese coasts has decreased by approximately 40% in the last 40 years due to climate change and human activity. In addition, there are similar concerns regarding coastlines worldwide.

Introduction

They have been remarkably reduced in Japan by climate change or human activity. Coastal engineering efforts such as reclamation and dredging and the phenomenon known as barren ground (called "isoyake" in Japanese) have led to the deterioration of coastal environments.

Chemical composition of main materials used

(mass %)	(m Flow medium sa	Shirasu	Decomposed granite	Waste roof tile	Analysis items
li Sallu	110w meaturn sa	Sillasu	Decomposed granite	waste 1001 the	Analysis items
	0.15	2.11	0.76	0.34	LOI
	77.28	69.09	76.41	74.08	SiO ₂
	7.56	15.92	12.64	16.97	Al_2O_3
	1.32	2.74	1.25	3.68	Fe ₂ O ₃
	0.24	0.28	0.07	0.90	TiO ₂
	4.44	3.01	0.52	0.40	CaO
	0.92	0.61	0.10	0.44	MgO
	1.59	3.76	3.33	0.40	Na ₂ O
	6.07	2.20	4.61	2.32	K ₂ O
	99.57	99.72	99.69	99.53	Total amount
	1.32 0.24 4.44 0.92 1.59 6.07	2.74 0.28 3.01 0.61 3.76 2.20	1.25 0.07 0.52 0.10 3.33 4.61	3.68 0.90 0.40 0.44 0.40 2.32	Fe_2O_3 TiO_2 CaO MgO Na_2O K_2O

Notably, a stable supply of iron, which is indispensable for seaweed growth, is lacking under the sea due to the changes in the nutritional composition of the sea caused by deforestation and the development of dams on land.

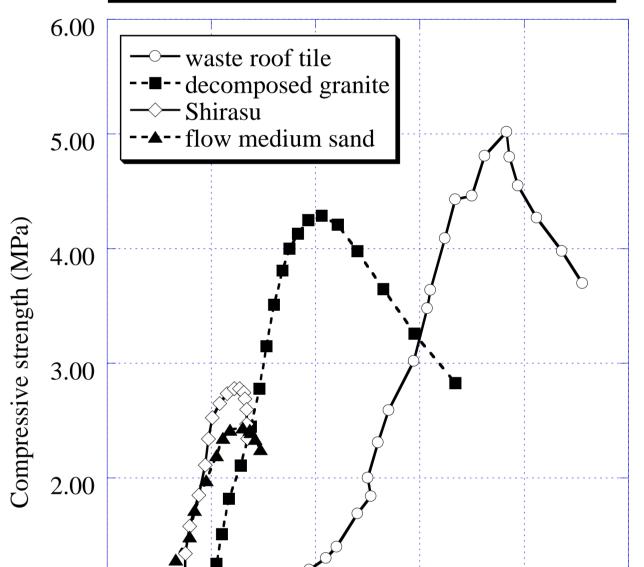
Isoyake at Sasebo

Test results of base materials for seaweed beds

Results of the unconfined compression test (waste roof tile, 28 days curing)

	Waste roof tile	30.7
	Recycled gypsum	21.7
Mixing ratio	Water	17.9
(%)	Scrapped ceramics	15.9
	Cement	10.0
	iron powder	3.8
Unconfined compressive strength (MPa)		5.02
Water content (%)		13.2
Wet de	1.65	

Results of the unconfined compression test (decomposed granite, 28 days curing)


	Decomposed granite	30.7
	Recycled gypsum	21.7
Mixing ratio	Water	17.9
(%)	Scrapped ceramics	15.9
	Cement	10.0
	iron powder	3.8
Unconfined	4.29	
Wate	10.7	
Wet d	1.70	

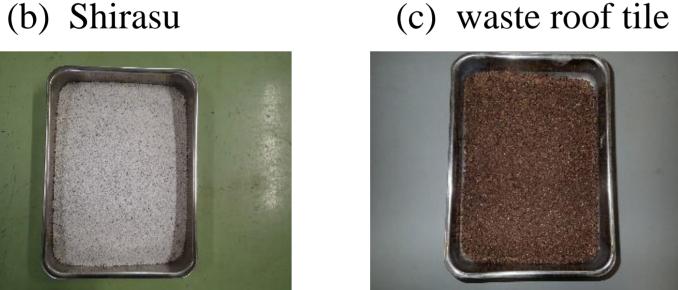
Results of the unconfined compression test (Shirasu, 28 days curring)

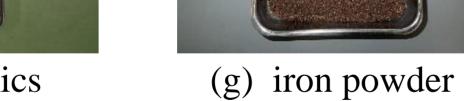
Shirasu	30.1
Decycled gyngum	21.2

Results of the unconfined compression test (flow medium sand, 28 days curing)

	Flow medium sand	30.7		
	Recycled gypsum	21.7		
Mixing ratio	Water	17.9		
(%)	Scrapped ceramics	15.9		
	Cement	10.0		
	iron powder	3.8		
Unconfined	compressive strength (MPa)	2.44		
Wate	Water content (%)			
Wet de	Wet density (g/cm^3)			

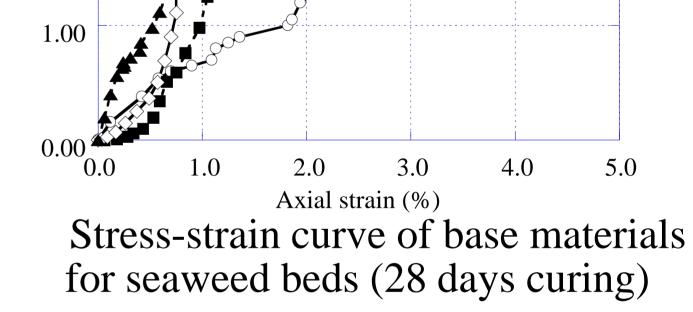
Materials used





(a) decomposed granite

(e) recycled gypsum



(f) scrap ceramics

(h) blast-furnace slag cement type b

(d) flow medium sand

	Recycled gypsum	21.2		
Mixing ratio	Iixing ratio Water			
(%)	Scrapped ceramics	15.6		
	Cement	9.7		
	iron powder	3.7		
Unconfined	Unconfined compressive strength (MPa)			
Wate	Water content (%)			
Wet de	Wet density (g/cm ³)			

References

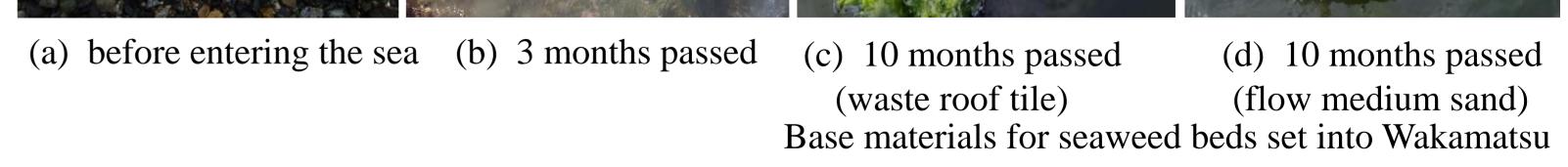
福田和純、山本健太郎、根上武仁、溝口直敏、平瑞樹、鶴成悦久: 特殊土や産業廃棄物リサイクル材を活用した藻場基盤材の製作とその実証試験, 第15回地盤改良シンポジウム論文集, pp.299-304, 2022.12.

K. Yamamoto, T. Negami, N. Mizoguchi, M. Hira and Y. Tsurunari: Development of environment-oriented base materials for seaweed beds by recycled materials, Journal of Material Cycles and Waste Management, Published online: 05 September 2023.

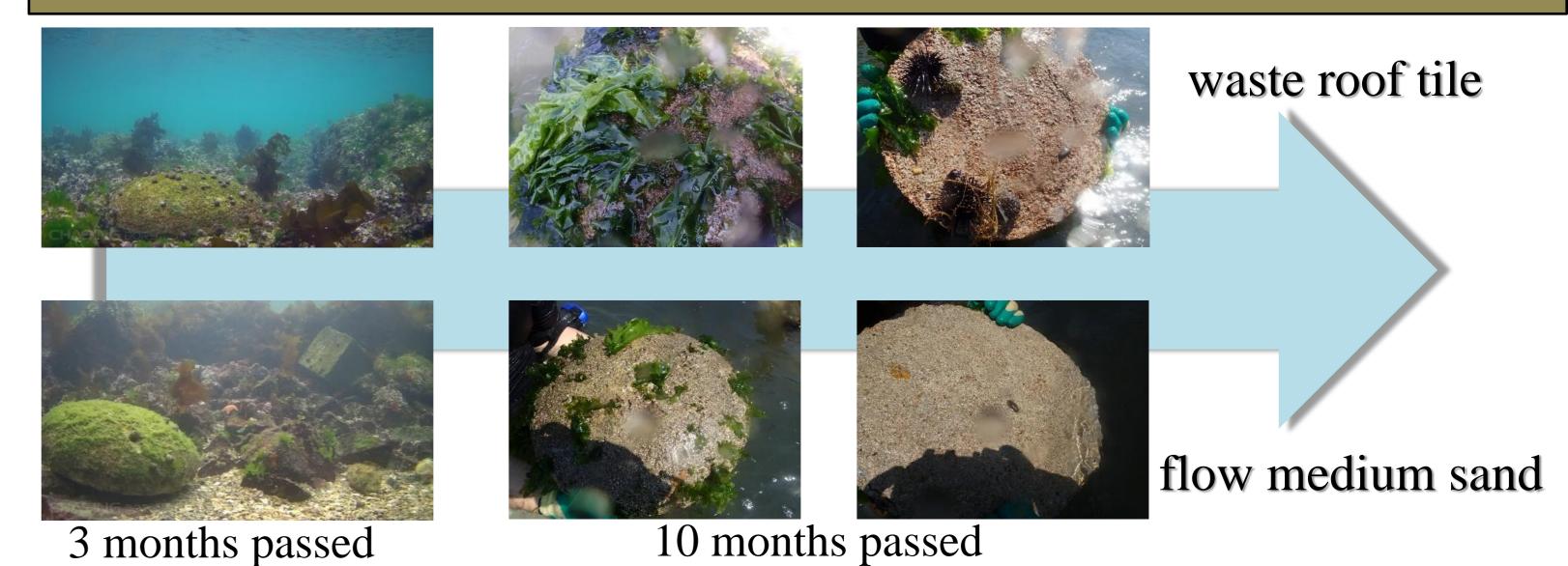
Monitoring rooting and growth of seaweed

We conducted the long-term monitoring by diving into the sea with an underwater digital camera in the summer and autumn seasons.

Summary of the monitoring dates and sea quality data from June


2021 to September 2022. These tables shows that the temperature of the sea water was high in September, 2021 and July-September 2022. The pH was approximately 8.04-8.34.

Monitoring	dates and	sea water	quality of	data ((Wakamatsu)
------------	-----------	-----------	------------	--------	-------------


monitoring date	Sep-21	Dec-21	Jan-22	Jun-22	Jul-22	Sep-22
sea water temperature (°C)	23.5	11.0	14.0	22.0	28.5	24.0
pН	8.14	8.04	8.04	8.25	8.30	8.06
electrical conductivity (mS/cm)	46.0	48.2	48.2	49.9	50.9	47.7
salinity (%)	2.7	1.0	1.1	1.6	3.0	3.2

Monitoring dates and sea water quality data (Kagoshima Bay)

U				•		
monitoring date	Jun-21	Sep-21	Nov-21	May-22	Jul-22	Sep-22
sea water temperature (°C)	22.0	26.5	20.0	20.5	28.0	26.5
pН	8.13	8.34	8.16	8.19	8.21	8.14
electrical conductivity (mS/cm)	42.5	38.9	47.1	45.1	38.6	43.6
salinity (%)	2.2	2.6	1.2	1.5	2.7	3.1

The research so far

